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This paper contains an ‘exact ’ solution for the hydrodynamic interaction of a three- 
dimensional finite cluster a t  arbitrarily sized spherical particles at low Reynolds 
number. The theory developed is the most general solution to the problem of an 
assemblage of spheres in a three-dimensional unbounded media. The boundary- 
collocation truncated-series solution technique of Ganatos, Pfeffer & Weinbaum 
(1978) for treating planar symmetric Stokes flow problems has been extensively 
modified to treat the non-symmetric multibody problem. The orthogonality 
properties of the eigenfunctions in the azimuthal direction are used to satisfy the no- 
slip boundary conditions exactly on entire rings on the surface of each particle rather 
than just a t  discrete points. 

Detailed comparisons with the exact bipolar solutions for two spheres show the 
present theory to be accurate to five significant figures in predicting the translational 
and angular velocity components of the particles a t  all orientations for interparticle 
gap widths as close as 0.1 particle diameter. Convergence of the results to the exact 
solution is rapid and systematic even for unequal-sized spheres (a,/a, = 2) .  Solutions 
are presented for several interesting and intriguing configurations involving three or 
more spherical particles settling freely under gravity in an unbounded fluid or in the 
presence of other rigidly held particles. Advantage of symmetry about the origin is 
taken for symmetric configurations to reduce the collocation matrix size by a factor 
of 64. Solutions for the force and torque on three-dimensional clusters of up to 64 
particles have been obtained, demonstrating the multiparticle interaction effects 
that  arise which would not be present if only pair interactions of the particles were 
considered. The method has the advantage of yielding a rather simple expression for 
the fluid velocity field which is of significance in the treatment of convective heat and 
mass transport problems in multiparticle systems. 

1. Introduction 
The slow motion of particles in an incompressible Newtonian fluid occurs in many 

physical processes and therefore the study of this problem is important both from a 
practical and theoretical point of view. Some important processes that depend on the 
relative motion of a suspension of particles include the mass transfer around a cluster 
of spheres falling in a viscous fluid, modelling of packed- and fluidized-bed reactors 
and filters, predicting the efficiency of spray scrubber devices, determining the 
agglomeration rate of aerosol particles in the atmosphere, the motion of red cells in 
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the microcirculation and the transport of vesicles across the endothelial cell layer 
lining the artery wall. 

As detailed in this section, the only solutions that are currently available in the 
literature for the hydrodynamic interaction of spherical particles are flow past two 
identical (Goldman, Cox & Brenner 1966; Kim & Mifflin 1985) or unequal spheres 
(Davis 1969) a t  an arbitrary orientation, a first-order weak-interaction theory for the 
three-dimensional multisphere problem (Hocking 1964), quasi-steady time- 
dependent motion of three or more spheres settling under gravity in vertical planar 
configurations (Ganatos, Pfeffer & Weinbaum 1978) and the drag force on three- 
dimensional periodic arrays (Zick & Homsy 1982; Sangani & Acrivos 1982). 
Recently, Durlofsky, Brady & Bossis (1987) have developed a theory equivalent to 
the method of reflections for predicting the velocity and force on a three-dimensional 
assemblage of spheres. However no exact interaction theory exists for non- 
symmetric three-dimensional multiparticle configurations involving a finite number 
of particles. 

The existence of a bispherical coordinate system has enabled exact solutions to be 
obtained for a variety of problems involving two spherical particles. Stimson & 
Jeffrey (1926) considered the axisymmetric motion of two spheres. The asymmetric 
case of motion perpendicular to the line of centres was treated by Dean & O’Neill 
(1963). Further extensions of this problem have been reported by Goldman et al. 
(1966) and Wakiya (1967) for the slow motion of two identical arbitrarily oriented 
spheres, by Kim & Mifflin (1985) for the complete solution of the motion of two equal 
spheres and by Davis (1969) for the case of two unequal spheres slowly rotating or 
translating perpendicular to their line of centres. Wacholder & Sather (1974) used 
the method of reflections to obtain the solution for two unequal spheres settling 
under gravity in a quiescent fluid. 

Theoretical solutions for predicting the drag force on a periodic array of spheres 
are currently available in the literature. Hasimoto (1959) developed a perturbation 
solution for multiparticle systems to  obtain the drag on each sphere in terms of an 
expansion in fractional powers of the concentration of the packing. He derived 
the periodic fundamental solution of the creeping motion equations and after 
expanding the velocity profile in terms of the fundamental solution and its 
derivatives, obtained an expression for the drag force for cubic arrays. However this 
method could be used only for dilute packing. Sangani & Acrivos (1982) extended 
Hasimoto’s method to calculate the drag to O(c3)  for cubic and hexagonal arrays of 
spheres, where c is the volume fraction of the spheres. They derived an expression for 
the dimensionless drag to O(clO) for arrays of spheres packed in simple cubic, body- 
centred cubic and face-centred cubic lattices. Using the boundary-integral method, 
Zick & Homsy (1982) formulated the problem for flow past three-dimensional 
periodic arrays of spheres as a set of two-dimensional integral equations for the 
unknown surface stress distribution, and obtained the drag force exerted on each 
sphere as a function of particle concentration and type of packing. 

The method of reflections has been used by many investigators to  study 
multiparticle interactions for a finite number of spheres (Happel & Brenner 1973). 
The technique is good only for weak interactions where the particles are spaced far 
apart and exhibits poor convergence characteristics for concentrated systems. 
Hocking (1964) used a single reflection to describe the particle interactions for a 
cluster of spheres falling in a viscous fluid neglecting inertial effects and assuming 
that the distance between any two spheres is large compared with their radii. He 
examined the stability of steady configurations for 3, 4, 5 and 6 spheres forming 
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regular polygons and compared his results with the experimental observations for 
the same motion reported by Jayaweera, Mason & Slack (1964). 

Most recently, Durlofsky, Brady & Bossis (1987) have developed a simulation 
method capable of computing static and dynamic properties of a finite system of 
hydrodynamically interacting spherical particles. The method uses an integral 
representation for the velocity field a t  any point in the fluid in Stokes flow in terms 
of a multipole expansion, in conjunction with the Faxen formulae for the motion of 
a sphere immersed in a flow field, to form the mobility matrix. The mobility matrix 
is inverted to obtain the resistance matrix. The inversion of the mobility matrix 
introduces the many-body resistance interactions. The lubrication effect is added to 
the resistance matrix in a pairwise additive manner using the exact two-sphere 
resistance interaction functions. Particle velocities are then determined by solving 
the matrix equation. The method has the advantage of yielding the instantaneous 
particle velocities with minimal computational effort thus allowing quasi-steady 
time-dependent calculations to be performed for determining the particle tra- 
jectories. However the method is not exact and does not readily permit the 
evaluation of the local fluid velocity field. 

Gluckman, Pfeffer & Weinbaum (1971) have obtained exact Stokes solutions for 
flow past a finite line array of spheres or spheroids by placing an infinite series of 
appropriate singularities a t  the origin of each sphere or spheroid. This study has 
shown that i t  is most efficient to use a truncated series of point singularities and 
satisfy boundary conditions at  discrete points on each object simultaneously. This 
method, the boundary-collocation, truncated-series solution technique, yields first-, 
second-, and fifth-order truncation solutions for the drag which are accurate to 2.5, 
0.1 and 0.001 YO respectively for the flow parallel to the axis of two touching spheres. 
This rapid convergence is in sharp contrast to the slowly converging results obtained 
using the method of reflections. The theory was applied to  treat flow past an 
arbitrary convex body of revolution in Gluckman, Weinbaum & Pfeffer (1972) and 
two unequal spheres or spheroids (Liao & Kreuger 1980). Ganatos et al. (1978) made 
major modifications to the theory and applied it to three-dimensional flows with 
planar symmetry. This theory has been used to obtain the quasi-steady time- 
dependent motion of three or more spheres settling under gravity in vertical planar 
configurations. The theory has also been extended to bounded flow problems such as 
the motion of a sphere of arbitrary size and position between two planar parallel 
walls (Ganatos, Weinbaum & Pfeffer 1980a; Ganatos, Pfeffer & Weinbaum 1980b; 
Ganatos, Weinbaum & Pfeffer 1982). Most recently the theory has been used in 
conjunction with the boundary-integral method to treat the off-axis approach of a 
spherical particle to a circular orifice (Yan et al. 1987). 

The collocation technique of Ganatos et al. (1978) has certain restrictions and 
difficulties. The method uses collocation points to satisfy the no-slip boundary 
conditions on the surface of each sphere and is restricted to planar configurations. The 
error in drag force for arbitrary settling of two spheres a t  a spacing of 1.128 diameters 
was 4% and the error in the much smaller horizontal drift velocity and angular 
velocities was as much as 20%. Using additional boundary collocation points did not 
always produce better accuracy for all orientations. The most important shortcoming 
of this technique was the selection of boundary points ; a different set of boundary 
points should be used for each orientation to give the best accuracy. About 6000 test 
solutions showed that, while a given configuration of points produced good results 
over a certain range of orientations, the same set of points could produce substantial 
errors outside this range. 
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The purpose of this paper is two-fold. First, we wish to present a fundamental 
theory for evaluating the hydrodynamic interactions of unrestricted three- 
dimensional finite multiparticle configurations. Secondly, we wish to modify the 
existing boundary-collocation theory developed by Ganatos et ul. (1978) for systems 
of particles in planar configurations to eliminate the convergence difficulties that 
were encountered. This paper is presented in six sections. Section 2 details the 
general formulation of the collocation technique for an arbitrary configuration of J 
spheres. Section 3 shows the strength of the method in duplicating the exact 
solutions for two spheres spaced as close as 1.12 diameters at any orientation. Section 
4 demonstrates the ability of this technique to handle arbitrary three-dimensional 
multisphere configurations. Some multisphere steady configurations falling under 
gravity are studied. Results are presented for an intriguing three sphere L-shaped 
configuration in which the method of paired interactions fails to predict the lateral 
motion of the corner sphere in that configuration. Solutions for the fluid velocity field 
through a configuration of three spheres arranged in an equilateral triangle are 
presented showing the development of separated regions of closed streamlines for 
certain orientations of the configuration. In  $5 advantage of symmetry is used to 
reduce the collocation matrix by a factor of 64 to obtain the drag and torque on 
clusters of8, 16, 24, 32, 48,56 and 64 spheres. Finally $6 discusses the strengths and 
weaknesses of this method and its future use for obtaining solutions of other fluid- 
mechanics problems. 

2. Formulation 
Consider the slow motion o f J  spheres (identical or unequal) moving in a viscous 

fluid in an arbitrary three-dimensional configuration as shown in figure 1 .  The flow 
field satisfies the creeping motion equations : 

pvv= V P ,  v .  v =  0. ( 2 . l a ,  6) 

The fundamental solution of (2.1 a ,  6) that  is capable of describing an arbitrary 
disturbance on the surface of a sphere of radius u was obtained by Lamb (1945) and 
given by Happel & Brenner (1973, p. 65) as 

Here x - ( ~ + ~ ) ,  @-(n+l) and P-(,+,, are solid spherical harmonic functions of order 
- ( n + l )  and r is the radial position vector whose origin is a t  the centre of the 
sphere. 

For J spheres moving slowly in an unbounded, incompressible, Newtonian, 
quiescent fluid, the linear superposition of J individual spherical solutions yields 
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FIGURE 1. Geometry for system of spheres falling freely in the three-dimensional space. 

where x ~ ( ~ + ~ ) , ~  C D - ( ~ + ~ , , ~  and P-(,+l,,i are solid spherical harmonic functions of order 
- (n + 1) which depend on r j ,  Oj and $i, the stationary spherical coordinates measured 
from the centre of the j t h  sphere a t  the instant of time under consideration. 

In  general? the three solid spherical harmonic functions in (2.3) have the following 

where PF(.$) is the associated Legrandre function, cj = cos0, and Ajmn,  ...,4mn are 
unknown constants, which for a given configuration of particles are determined by 
satisfying the no-slip boundary conditions on the surface of each particle. 

Substituting (2.4) into (2 .3 )  an expression for the fluid velocity field is obtained : 

J c o n  

P? (5) (Cjmn cos m$j + Dimn sin m,$i) in+ 1) T/ =-- 

(Ejmn cos m$i + 
rjn+2) 11 

sin mq$), i n + l )  PFitj) 
2,42n-l) r; 

+ ( 2 . 6 ~ )  
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m 
sin 0, rjn+l) VOj = - Pp(.&) (Ajmn sin m$j - B,,, cos m&) 

sine. dPm(t.) 
4n+z)  -2s (Cjmn cos mq5* + Djmn sin m$,) 

d S  3 

(n-2) sinOj U p ( & )  (E,,, cosm$j+qmn sinm$j), ( 2 . 6 b )  
2n,u(2n- 1 )  rj” d& 

+ 

(Ejmn sin m4j +I$,, cos m$j). (2.6,) (n- 2 )  mPE(5) 
+ 2n,u(2n- 1) sin 8, rj” 

The spherical coordinates ( r j ,  0,, $j) and their unit vectors ( c ? ~ ~ ,  ZOj, g4,) originate 
from the centre of each sphere and so they are different for each sphere. It is thus 
necessary to perform a transformation of coordinates to express the fluid velocity 
field in terms of a single orthogonal coordinate system. To facilitate applying the no- 
slip boundary conditions on the surface of each sphere, it is convenient to express all 
the coordinates in terms of a single spherical coordinate system whose origin lies a t  
the centre of the kth sphere. If the origin of the kth sphere is at  the point ( b k r c k ,  
dk) in a global Cartesian coordinate system ( X ,  Y , Z )  (see figure 1) and the origin of 
the j t h  sphere is (bj ,  cj, dj), the spherical coordinates of an arbitrary point in space 
relative to thej th  sphere are related to the spherical coordinates of the point relative 
to the kth sphere by the relations 

I rk sin 8, sin dk + c k j )  
rk sin 0, cos $k + bk j )  ’ 

$j = tan-l 

(2.7 b )  

( 2 . 7 ~ )  

where b k j  - - b k - b j ,  ckj  = c k - c ,  and dki = dk-dj. 

Details of the derivation of these coordinate transformations are given in 
Appendix A. Care must be exercised in the use of ( 2 . 7 ~ )  to assure that the value of 
$i that is computed lies in the appropriate quadrant. 

The unit vectors of thejth and kth spherical coordinate systems are related via the 
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( 2 . 9 ~ )  

(2 .9b)  

( 2 . 9 ~ )  

( 2 . 9 d )  

(2 .9e)  

where f i j k  = sin 8, sin 8, cos ($i - $,) + cos 8, cos Sj ,  

f i j k  = sin 8, cos 8, cos ( $ j  - 4,) - sin 8, cos S,, 

f 3 j k  = sinBi sin ( $ i - $ k ) ,  

f4$ ,  = cos Bj sin 8, cos (& - 4,) - cos 8, sin Sj, 

f S j k  = cos 8, cos 8, cos (dj - 9,) + sin 8, sin 8,, 

f s j k  = cos8j sin ( $ j - $ k ) >  

f .  73, = -  sin8k sin ( $ j - $ k ) j  

( 2 . 9 f )  

(2 .99)  

f s j k  = - cos 8, sin ($j - O,), (2 .9h)  

f 9 j k  = 'OS ( $ j - $ k ) .  (2 .9 i )  

The derivation of (2 .8)  and (2 .9)  is also given in Appendix A. Here the angles 13~ and 
$i are related to the spherical coordinates ( r k ,  8k, 4,) using (2 .7) .  

Substituting ( 2 . 7 ) ,  (2 .8)  and (2 .9)  into (2 .5)  and (2 .6)  yields an expression for the 
fluid velocity field in terms of the spherical coordinates (r,,  8,, $,) originating a t  the 
centre of the kth sphere which can be written in the following form: 

vk = [ J'rk t r k  + '8, k8k + v$k g+k17 (2.10) 

where J'rk = 2 C C [ A i m n A ; k m n + B j m n B ; k m n +  ... + q , n F ; k m n ] ,  (2 .11a)  
J m n  

i-1 n=1 m=O 

J w n  

j = 1  n=l  m=O 

J m n  

j=1 n=l m=O 

v ' k  = c c C [A,m,A;c,,,+Bj,,B;c,m,+ . . . + ~ r n , F ; c , m , ] ,  (2.11b) 

= c c c [ A j , , A ~ ~ , , + B j r n , B ~ ~ , , +  . . . + q m , F ~ ~ , , ] .  ( 2 . l l c )  

Here Vrk, VOk, V4k are the fluid velocity components in a stationary spherical 
coordinate system whose origin lies a t  the centre of the kth sphere. The primed 
quantities in (2.11) are known functions of the coordinates r,, 8, and $k and are given 
in Appendix B. The unprimed coefficients are the unknown constants introduced in 
(2 .4) .  

The 'no-slip' boundary conditions which must be satisfied on the surface of each 

(2.12) sphere are 

where a,  is the radius of the kth sphere and U, and $2, are the translational and 
rotational velocities of the kth sphere whose Cartesian components are denoted by 

(2 .13)  

(2.14) 

Substituting (2.13) and (2.14) into (2.12) and using (A 6) gives the three spherical 

(2 .15a)  

u r , = a k  = 4 + nk Sr, ,  

= u k  î + v k i +  w k  R j  

gk = (Ox), î + (Qu)k]+  (G,), R .  

components of velocity on the surface of the kth sphere as 

vklrk=ak = u k  sin 8, cos $k + vk sin 8, sin $k + w k  cos 8kj 
Gklrk=ak = 4 cos 8, cos $k + v k  cos 8, sin $k - w k  sin 8, 

+ a k [ ( Q , ) k  cos 8,- ( Q x ) k  sin Ok], (2 .156)  

bk l rk=a ,  - - - u k  sin $k + vk cos $k -a,[( (Qz),+ cos #k 

+ ( Q y ) k  sin $,) cos 8,- (Q,), sin O , ] .  ( 2 . 1 5 ~ )  
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To enable application of the boundary conditions (2.15) on the surface of cach 
sphere, the order of summation Z2=l C%=, in (2.11) is changed to 

m m  

c c  

without loss of any terms in the series and the term j = k is extracted from the series 
xj”=l. Furthermore when j = k ,  the term m = 0 is written separately. Evaluating 
(2.11) a t  rk = a, and equating it to (2.15) gives 

m=O n=m 
n+O 

V,.klrk=ak = U, sin 8, cos $, + V, sin 8, sin $, + W, cos 8, 
m 

= [AkOnALkOn +BkOnBikOn+ ... +E7kOnF;kkOnl 
n=o 

+ 
m m  

LAkrnn Ai-kmn + Bkmn B i k m n  + ... + Fkmn ’ k m n l  
m = l  n=m 

J m m  

+ C c 2 [ A j m n A ~ , m n + ~ j m n ~ ~ k m n +  . . .+qmnF;kmn] ,  ( 2 . 1 6 ~ )  
j=1 m=O n=m 
i + k  

Voklrk=ak = U, cos 0, cos $, + V, cos 8, sin $, - W, sin 8, 

cosBk-( lzz) ,  sin Ok] 
m 

= 2 ‘ i k o n  + BkOn BikOn + ... + FkOn ’ ikon]  
n=o 

+ C C [ A , m n ~ 4 ~ , m n + B , m n ~ ~ k m n + . . . + ’ k m n ~ ~ k m ~ l  

m m  

m=l n=m 
J m m  

+ C c [ A j m n A y k m n  +BjmnBykmn + . .. +qmnpykmn], 6 b )  
j=1 m=O n=m 
7+, 

&kI‘k=ak = Uk sin $2 + v, cos $I ,  

-a,[((Q,)k cos$,+ ( Q V ) ,  sin$,) cos8,-(sZ,), sin O,] 
m 

= C [ A k O n A ~ ~ O n + B k O n B ~ k O n + “ ~ + F k O n F ~ k O n l  
n=o 

+ C C [ A , m n A ~ k m n + H , m n ~ ~ , m n +  ... +FkmnFFkmn] 
m m  

m=l n=m 
J m m  

+ C C C [ A ~ m n ~ y ~ m ~ ~ + ~ j m n B y ~ m n +  . . . + ~ m ~ ~ E 7 ~ ~ m n ] ,  ( 2 . 1 6 ~ )  

where the primed functions depend only on the coordinates 8, and $, and are given 
by (B 1)-(B 18) with r, = a,. 

The terms j = k in (2.16) (see Appendix B) depend only on the eigenfunctions 
sin m$, and cos m$, or are independent of $,. Thus these functions can be written in 
the form of a Fourier series in $, as 

j = l  m=O n=m 

m 

Ah(O,)+ C [Ak(8,) cosm$,+B&(B,) sinm$,] = 4”(8,, $,), ( 2 . 1 7 ~ ~ )  
m=l  

m 

Ag(O,)+ 2 [A:(8,) cosm$k+fl;(8,) sinm$k] = F”(O,,$k). (2.176) 
m=l 
30 

A;(O,)+ C lAG(8,) cosm$k+B;(8,) sinm$,] = F”’(8k,$k). ( 2 . 1 7 ~ )  
m=l 
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Here the primed A ,  B and F functions depend only on the variables indicated and 
the unknown constants Akmn -Fkmn and are given in Appendix C. Multiplying (2.17) 
by the eigenfunction set { 1, cos m’$k, sin m’$,}, integrating with respect to $ k  from 0 
to 27c and utilizing the orthogonality properties of these eigenfunctions in this 
interval allows one to obtain explicit expressions for the primed A and B coefficients 
appearing in (2.17) and the unknown constants Ajmn-$,,, in (2.4). The results 
are : 
for the r-component of velocity : 

Ah(O,) = Wk cos c [Ajmn A;kmn + . . . +I$mn Fikmn] (2.18a) 

for the &component of velocity 

(2.18 i ,  j )  

for the $-component of velocity : 

(2.181, n 

(2.18n, 0) 

where C denotes 
J c n m  

c c c  
j=l m=O n=m 
J C k  
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and the functions (Ah ... BK,) on the left-hand side of (2.18) are given by (C 1)-(C 30) 
with m replaced by m'. The primed coefficients of the unknown constants on the 
right-hand side of (2.18) are given by (B 1)-(B 18) evaluated a t  r,  = a,. The integrals 
appearing in (2.18) must be evaluated numerically. 

We first consider the resistance problem in which the translation and angular 
velocity of each particle is prescribed and we seek to determine the force and torque 
acting on each particle to  maintain this motion. The unknown constants Ajmn - F,,, 
introduced in (2.4) can be computed to any desired degree of accuracy from (2.18) 
and (C 1) to (C 30)  by satisfying the no-slip boundary conditions on rings along the 
surface of each sphere as follows. The infinite series Cg=, appearing in (2.18) is 
truncated after M terms to Cf:;. Furthermore the infinite series C,"==, appearing in 
(2.18) and (C 1)-(C 3 ) ,  (C 11)-(C 13) and (C 21)-(C 23) are each truncated after N 
terms to CTTz. Since there are six sets of unknown constants Ajmn-Tmn, for J 
spheres, this leaves a total of 6 JMN unknown constants to  be determined. However 
when m = 0 the coefficients of the constants Bion, Djon and F,,, are identically zero 
for all three velocity components. Thus these three sets of constants do not appear 
in the final solution and the number of unknowns is reduced by 3 JN to a total of 
6 JMN-3 JN or more simply, 3JN(2M- 1 ) .  

To generate the equations needed to evaluate these unknown constants, the no-slip 
boundary conditions are satisfied at N discrete values of 0, (rings) on the surface of 
each of the J spheres. We observe that for m' = 0 ,  (2.18a, f, k )  represent a total of 
3JN equations. Similarly for m' = 1,  (2.18b, c ,  g, h, I, m) are another 6 J N  equations. 
Finally, for m'= 2 , 3 , 4  ... M - 1  (2.18d, e ,  i,j, n, 0) give an additional SJN(M-2)  
equations. Thus from (2.18) we have a grand total of 3 J N + 6 J N + 6 J N ( M - 2 )  = 
3 J N ( 2 M -  1 )  equations, which is exactly equal to the number of unknown constants. 
These equations may be solved using any standard linear matrix reduction 
technique. 

The hydrodynamic force and torque acting on thej th  particle is given by Happel & 
Brenner~ (1973) as 

( 2 . 1 9 ~ )  

= - 8 x V ( r j 3 ~ - ~ , , ) .  (2.19b) 

Using (2 .4) ,  the Cartesian components of the force and torque exerted by the fluid on 
each particle is given by 

4 = -4x[Ejll i+F,lllj+Ejol k], (2.20 a )  

(2.20 b )  

where the six constant coefficients for each of the J spheres are known from the 
solution of (2.18). 

We next consider the mobility problem in which the force and torque acting on each 
particle is prescribed and we seek to determine the resulting translational and 
angular velocities. To illustrate this, we examine the special case of a finite cluster of 
spheres falling freely under gravity in an unbounded medium. The balance between 
bouyancy and Stokes drag gives 

-4x[Ej11 i+Ej l l j+EjOl  k] = - Q E u ~ (  3 Ps,  - P )  gk, (2.21a) 

where psi is the density of the j th  sphere and p is the fluid density. The condition of 
zero torque gives 

- 8 7 ~ / 4 A j ~ ~  i+Bjllj+Ajol k] = 0. (2.21 b )  
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From (2.21) we evaluate the 6 J  constants as 

The 6 J unknown particle translational and angular velocity components contained 
in (2.18) are exactly equal in number to the 6 J  constants evaluated in ( 2 . 2 2 ) .  
Therefore the total number of equations and unknowns remain the same. The 6J 
unknown velocity components and the remaining 3 JN(2M - 1) unknown coefficients 
can be computed using any standard linear matrix reduction technique. After the 
unknown Aimn-l$mn coefficients have been determined from the solution of (2.18) 
they may be substituted into (2.11) to yield a relatively simple expression for the 
local fluid velocity a t  any point in the flow field. The more general problem involving 
a combination of a prescribed force and torque on some of the particles, and 
prescribed translation and angular velocities on the remaining particles may also be 
treated in a similar fashion. 

Two special cases of the general three-dimensional theory described above will now 
be considered : the planar case and the axisymmetric case. For the planar case (the 
centres of all the spheres lie in the plane Y = 0) the constants Aim,, Dim, and F,,, 
are all zero and so the number of unknowns is reduced to 3JMN - J N .  Moreover 
equations (2.18c, e ,  h , j - l ,  n) are identically zero because the velocity components 
V,, (Q,), and ( Q Z ) ,  vanish and the integrands in these equations are odd functions 
about $ k  = x. Thus for m’ = 0,  (2.18a, f )  provide W N  equations, for m’ = 1, 
(2.18b, g, m) provide 3JN equations and for m’ = 2 , 3 ,  ..., M - 1, 2.18d, i ,  o )  provide 
an additional 3 J N ( M  - 2 )  equations giving a total of 3 JMN - JN equations, which is 
equal to the number of unknown constants. For these planar symmetric 
configurations, computation time can further be reduced by a factor of two by 
realizing that the remaining integrands are even functions about 4, = x and 
performing the numerical integration only in the range 0 < $k  < n. The axisymmetric 
case (the centres of all spheres lie along the Z-axis) can be deduced from the planar 
case. For axisymmetric configurations only the first term corresponding to m = 0 is 
needed in the infinite series. Therefore from (B 2 ) ,  (B 8),  and (B 14) the Bion 
coefficients are all zero and the number of unknowns is reduced to 2JN. With 
m’ = 0, equations (2.18a, f )  provide 2JN equations for the unknown constants. It is 
worth noting that for the axisymmetric case the integrands of (2.18a, f )  are 
independent of $, and the integration in $, can thus be performed analytically. The 
axisymmetric problem reduces to that solved by Gluckman et al. (1971) and therefore 
the accuracy of the method described herein is comparable with that of Gluckman 
et al. (1971) for the axisymmetric case. 

To illustrate the application of the general three-dimensional theory to a specific 
problem, we consider the case of two identical spheres at arbitrary orientation 
settling freely under gravity as shown in figure 2. The boundary conditions are 
satisfied on two rings on the surface of each sphere and the Fourier series is truncated 
after the first two terms (m = 0 and 1) .  When specifying the rings on the surface of 
each sphere where conditions (2.15) are to be exactly satisfied, i t  is necessary to  
choose a pattern that is symmetric about the equatorial plane 0, = in. Therefore the 
boundary condition is satisfied on two rings a t  angles 6 ,  and 7~-0, on each sphere 
and the boundary-collocation series includes terms for m = 0 and 1.  The total 
number of equations obtained according to the expression 3 J N ( 2 M -  1 )  (where J is 
the number of spheres ; N is the number of rings and M is the order of truncation of 
the Fourier series) is 36. Therefore the unknown constants and velocity components 
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/ 

FIGURE 2. Two spheres settling freely under gravity at a n  arbitrary orientation. 

to be obtained are : C,,, ; Ajoz ; C,,, ; F,,, ; Gj,, ; Dj,,.,, ; Ailz ; BiI2 ; cj12 ; 
q.; 5 ;  Wj; (SZ,)?; (SZ,)j; (sZ,)j f o r j  = 1,2 .  

; Ejla ; q12 ; 

From (2.18) we obtain 36 equations, or 18 equations for each sphere, or nine 
equations for each ring on each sphere. These nine equations are obtained for m’ = 

0 and m’ = 1. For m‘ = 0 we obtain three equations from (18a, f ,  k )  and for m’ = 1 
we obtain six equations from (2.18b, c, g, h, 1, m). We get a corresponding set of nine 
equations for the other ring on the same sphere and two rings on the other sphere. 
The total set of 36 simultaneous equations forms the collocation matrix (Appendix 
D) and is solved numerically by a standard matrix reduction technique to obtain the 
values of unknown constants and the six velocity components. 

3. Two-sphere solutions 
In this section the accuracy and convergence of the basic collocation technique 

described in the previous section will be carefully examined by comparing the 
present results with the exact two-sphere solutions of Stimson & Jeffrey (1926) and 
Goldman et al. (1966), the axisymmetric multiparticle boundary collocation solutions 
of Gluckman et al. (1971) and the approximate planar collocation solutions of 
Ganatos et al. (1978). 

Numerous test results were done to determine the best possible arrangement of the 
boundary collocation rings on the surface of each sphere for faster convergence of the 
collocation series. The single most important ring is at 8, = an (i.e. the equatorial 
plane of the sphere) since this ring covers the largest area on the surface of the sphere 
and also controls the projected area of the sphere. However, it was found that a 
singular matrix resulted if a boundary collocation ring was placed at Ok = in. There- 
fore a pair of rings were placed at 8 = $t * a: to overcome this problem, as was done 
by Gluckman et nl. (1971) for axisymmetric flow. After doing several runs with 
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Distance between sphere centres in sphere diameters. U/2a 

s 1.0024.5 1.04534 1.12763 1.54308 2.35241 6.13229 

2 1.5 1 104 
4 1.55182 
6 1.55002 
8 1.55005 

10 1.55000 
12 1.54935 
14 1.54936 
16 I ..54937 
18 1.54937 

Exact 1.54937 

1.50066 
1.53936 
1.53818 
1.53763 
1.53757 
1.53758 
1.53759 
1.53759 
- 

1.53759 

1.48161 
1.51672 
1.51639 
1.51605 
1.15199 
1.51599 

1.51599 

1.39993 
1.42304 
1.42358 
1.42359 
1.42358 
1.42358 

1.42358 

1.29180 
1.30230 
1.30245 
1.30246 
1.30246 

- 

1.30246 

1.12081 
1.12160 
1.12160 

- 

1.12160 

TABLE 1 \'rlocity of two spheres settling axispmmetric~ally under gravity a t  different spacings. N 
is the number of boundary collocation rings on each sphere. 

decreasing values of CI it was determined that with a: = 0.01" convergence to five 
digits was obtained. Additional pairs of boundary collocation rings were placed 
symmetrically about the equatorial plane in the upper and lower hemisphere equally 
spaced in the rcgion Ok = 0 to Ok = (in - a )  and 8, = (in + a )  to 0 = 7c. 

Table 1 shows computed values for the velocity of two identical spheres falling 
axisymmetrically under gravity as a function of interparticle spacing, D/2a,  and the 
number of boundary collocation rings used on each sphere, N .  The velocities have 
been non-dimensionalized by the terminal settling velocity of an isolated sphere. For 
this axisymmetric flow, only the first term in the Fourier series (M = I )  is used. 
Comparison with the exact results of Stimson & Jeffrey (1926) show that convergence 
to six significant figures can be obtained a t  all spacings. The rate of convergence is 
slowest a t  close spacings but increases rapidly with increasing spacing. This 
behaviour is consistent with the axisymmetric boundary collocation results of 
Gluckman P t  al. (1971). It should be noted that the method of Gluckman rt al. (1971) 
of satisfying the no-slip boundary conditions a t  discrete points on the surface of each 
particle is equivalent to the present method since Gluckman et aE.'s solutions actually 
satisfy the boundary conditions on rings owing to the axisymmetric symmetry of the 
problem. Gluckman et al. (1971) reported values for the drag coefficient factor for 
uniform flow past an axisymmetric chain of rigidly held spheres. Two equal spheres 
falling under gravity parallel to their line of centres fall with the same velocity and 
do not rotate. Therefore for this special case the reciprocal of the drag correction 
factor reported by Gluckman et al. (1971) is equal to the terminal settling velocity of 
two spheres at a given spacing. For the special axisymmetric case the method reduces 
to that of Gluckman et al. (1971) and the collocation series is identical term by term. 
Therefore comparison of table 1 with the solutions of Gluckman et nl. (1971) shows 
the rate of convergence of the two methods to be identical and the accuracy of this 
method is comparable with that of Gluckman et al. (1971) for the axisymmetric case. 
However, for a given number of boundary collocation rings used on each sphere N ,  
before convergence is achieved, the two sets of results are not exactly identical 
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2 2 
2 3 
2 4 
4 2 
4 3 
4 4 
4 5 
6 2 
6 3 
6 4 

E x a c t  solution 

2 2 
2 3 
2 4 
2 5 
4 2 
4 3 
4 4 
4 5 
6 2 
6 3 
6 4 
6 5 

Exac t  solut.ion 

2 2 
2 3 
2 4 
4 2 
4 3 
4 4 
6 2 
6 3 
6 4 
6 5 

E x a c t  solution 

2 1 
4 1 
6 1 

E x a c t  solution 

2 2 
2 3 
2 4 
4 2 
4 3 
4 4 
6 2 
6 3 
6 4 

E x a c t  solution 

G 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

- 0.061 65 
-0.06063 
- 0.06059 
- 0.06059 
-0.06115 
- 0.0600 1 
- 0.05995 
-0.05995 
- 0.06 1 10 
-0.05996 
-0.05991 
- 0.05991 
-0.05991 

-0.04988 
-0.04977 
-0.04977 
-0.05997 
-0.05982 
-0.05982 
- 0.06006 
- 0.0599 1 
- 0.05991 
- 0.05991 
- 0.05991 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

V W 
(a)  y = O,p = 0" 

- 1.1628 
-1.1627 
-1,1627 
- 1.1642 
- 1.1642 
- 1.1641 
-1.1641 
-1.1642 
-1,1641 
-1.1641 
- 1.1641 

( b )  y = 0,p  = 30" 
- 1.2024 
- 1.2017 
- 1.2017 
-1.2017 
- 1.1994 
- 1.1987 
-1.1987 
-1.1987 
-1.1994 
-1.1987 
-1.1987 
- 1.1987 
- 1.1987 

(c) y = 0,p  = 60" 
- 1.2656 
- 1.2655 
- 1.2655 
- 1.2682 
- 1.2679 
- 1.2679 
- 1.2681 
- 1.2679 
- 1.2679 
- 1.2679 
- 1.2679 

( d )  y = 0 , p  = 900 
- 1.2918 
- 1.3023 
- 1.3025 
- 1.3025 

( e )  y = 30.p = 0' 
0 - 1.1628 
0 - 1.1627 
0 - 1.1627 
0 - 1.1642 
0 -1,1642 
0 - 1.1642 
0 - 1.1642 
0 - 1.1641 
0 - 1.1641 
0 - 1.1641 

Q, 

0.01722 
0.01722 
0.01722 
0.01690 
0.0 1690 
0.01690 
0.01692 
0.0 1691 
0.01 69 1 
0.01691 

Q, 

0.03444 
0.03443 
0.03443 
0.03381 
0.03381 
0.03381 
0.03381 
0.03383 
0.03383 
0.03383 
0.03383 

0.02897 
0.02912 
0.02913 
0.029 13 
0.029 14 
0.02930 
0.02931 
0.02931 
0.02913 
0.02930 
0.02930 
0.02930 
0.02 930 

0.01602 
0.01611 
0.01611 
0.01679 
0.01691 
0.0 1691 
0.01679 
0 .O 169 1 
0.01 691 
0.01691 
0.01691 

0.02982 
0.02982 
0.02982 
0.02928 
0.02928 
0.02928 
0.02930 
0.02930 
0.02930 
0.02930 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Table 2 (cont.) 
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N M  

2 2 
2 3 
2 4 
2 5 
4 2 
4 3 
4 4 
4 5 
6 2 
6 3 
ti 4 

Exact solution 

2 2 
2 3 
2 4 
4 2 
4 3 
4 4 
6 2 
6 3 
6 4 

Exact solution 

2 2 
2 3 
2 4 
2 5 
4 2 
4 3 
4 4 
6 2 
6 3 
6 4 

Exact solution 

2 2 
2 3 
2 4 
2 5 
4 2 
4 3 
4 4 
4 5 
6 2 
6 3 
6 4 
6 5 

Exact solution 

17 

-0.05339 
-0.05251 
-0.05247 
-0.05247 
-0.05296 
- 0.05197 
-0.05192 
- 0.05 192 
-0.05292 
-0.05193 
-0.05188 
- 0.051 88 

-0.04300 
- 0.043 10 
-0.04310 
-0.05 193 
- 0.05180 
- 0.05 180 
-0.05201 
-0.05188 
-0.05188 
- 0.051 88 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

-0.03083 
-0.03032 
-0.03030 
-0.03030 
- 0.03058 
- 0.03000 
-0.02998 
-0.02998 
-0.03055 
- 0.02998 
- 0.02995 
-0.02995 
- 0.02995 

V W 

( f )  y = 30,p = 30" 
-0.03083 - 1.2024 
-0.03031 - 1.2017 
-0.03030 -1.2017 
-0.03030 - 1.2017 
-0.03058 -1,1994 
-0.03001 - 1.1987 
-0.02998 - 1.1987 
-0.02998 - 1.1987 
-0.03055 -1.1994 
-0.02998 - 1.1987 
-0,02995 - 1.1987 
-0.02995 - 1.1987 

(9 )  y = 30,p = 60" 
-0.02494 - 1.2656 
- 0.02489 - 1.2655 
-0.02489 - 1.2655 
-0.02998 - 1.2682 
-0.02991 - 1.2679 
-0.02991 - 1.2679 
-0.03003 - 1.2681 
-0.02996 - 1.2679 
-0.02995 - 1.2679 
-0.02995 - 1.2679 

(h )  y = 60, /I = 0" 
0 -1.1628 
0 -1.1628 
0 -1.1627 
0 - 1.1627 
0 -1.1642 
0 -1.1642 
0 - 1.1641 
0 - 1.1642 
0 -1.1641 
0 -1.1641 
0 -1.1641 

( i )  y = 60,p = 30" 
-0.05339 - 1.2024 
-0.05251 - 1.2017 
-0.05247 - 1.2017 
-0.05247 - 1.2017 
-0.05296 -1.1994 
-0.05197 -1.1987 
-0.05192 -1.1987 
-0.05192 - 1.1987 
-0.05292 - 1.1994 
-0.05193 -1.1987 
-0.01588 -1.1987 
-0.05188 -1.1987 
-0.05188 - 1.1987 

Q, 

0.0 1449 
0.01456 
0.01456 
0.0 1456 
0.01457 
0.01465 
0.01466 
0 .0 1466 
0 .0 1456 
0.01464 
0.01465 
0.01465 

0.00801 
0.00805 
0.00805 
0.00839 
0.00845 
0.00845 
0.00840 
0.00841 
0.00846 
0.00846 

0.02982 
0.02982 
0.02982 
0.02982 
0.02928 
0.02928 
0.02928 
0.02930 
0.02930 
0.02930 
0.02930 

0.02509 
0.02522 
0.02525 
0.02523 
0.02524 
0.02537 
0.02539 
0.02539 
0.02522 
0.02536 
0.02537 
0.02537 
0.02537 

Q, 

0.02509 
0.02522 
0.02523 
0.02523 
0.02524 
0.02538 
0.02539 
0.02539 
0.02522 
0.02536 
0.02537 
0.02537 

0.01388 
0.01395 
0.01395 
0.01454 
0.01464 
0.01464 
0.01454 
0.01465 
0.01465 
0.01465 

0.01726 
0.01727 
0.01722 
0.01722 
0 .0 1690 
0.01690 
0.0 1690 
0.01692 
0.0169 1 
0.01 69 1 
0 .0 169 I 

0.01449 
0.01456 
0.01456 
0.01456 
0.01457 
0.01465 
0 .0 1466 
0.01466 
0.01456 
0 .0 1464 
0.01465 
0.0 1465 

Q, 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.01465 0 



h
 

r)
 

c
 

r
t
 

C
T

 
I 

rc
 

i
 

r
t 

I 
I 

l
,

l
-

 
I 

I 
I 

'
A

 
0
 
c

c
-

 p
p

p
 c

c
-

 
o
c
c
b
c
c
o
o
c
~
 c:
 

N
 

N
N

W
 N

N
c

3
 C

S
N

W
 

w
 

w
o

o
 w

o
o

 P
P

P
 

w
 
w
w
o
 c

s
o

o
 

w
w

w
 

cn
 

m
a

w
 -
-
m
 

W
C

D
P

 

I 
c
 c
c
s
 c

o
c

 c
c
c
 

Q
 

R
 

3
 

Q
 



The motion of three-dimensional clusters of spherical particles 17 

because the collocation rings are not placed exactly at the same values of Bk as the 
collocation points in Gluckman et al.'s paper. 

Table 2 (a-m) shows the computed translational and rotational Cartesian velocity 
components for two spheres settling freely under gravity in 13 different combinations 
of elevation angle /3 and azimuthal Orientation angle y a t  a spacing of 2.3524096 
diameters (see figure 2). All the results for the various orientations converge to the 
exact solution of Goldman et al. (1966) to five decimal places with increasing values 
of M and N. Moreover, it is interesting to note the pattern of convergence. For non- 
axisymmetric configurations we need a t  least two terms in the series (corresponding 
to m = 0 and rn = 1) to introduce dependence of the solution on the azimuthal angle 
#k. At this spacing six rings and up to 4 terms of the Fourier series are needed to 
produce five-digit accuracy in the translational and angular velocity components. 
The number of rings and the order of truncation of the Fourier series M required for 
a given accuracy are nearly independent of the elevation angle /3 and azimuthal 
orientation angle y except in the limit as the axisymmeric case is approached 
(/3-90") where only the first term in the Fourier series is required (M = 1). 

Table 3 shows convergence results for the severe case of two spheres settling freely 
under gravity in a vertical plane a t  an elevation angle /3 = 60" (see figure 2) and a 
spacing of 1.1276260 diameters between centres. It is seen that all three velocity 
components converge to the exact solutions of Goldman et al. (1966) to five 
decimal places with increasing N and M even at this close spacing. This accuracy is 
achieved with N = 10 and M = 7 .  In  contrast, for this configuration the approximate 
collocation solutions of Ganatos et al. (1978) gave an error of 3%, 8% and 12% in 
W ,  U and 52, respectively. 

Examination of tables 1,  2 and 3 shows that the number of rings required on each 
particle to achieve a given accuracy of the result depends only on the interparticle 
spacing and is independent of the relative orientation of the two particles. As a rule 
of thumb one could use table 1 to estimate the number of rings N required for a given 
accuracy a t  any orientation. The minimum order of truncation of the Fourier series 
M for the same accuracy is roughly 70% of the required number of rings N at that 
spacing, except for nearly axisymmetric configurations where a smaller value of M 
could be used. 

Table 4 presents the forces and torques exerted by two unequal spheres (a l /a ,  = 
2) with interparticle gap width equal to the smaller radius (#/a, = 1) moving 
perpendicular to the line joining their centres with equal velocities. These results 
reproduce the exact solutions of Davis (1969). These results again demonstrate the 
convergence to the exact values with increasing values of M and N .  In this study we 
have used the same value of M and N for both the small and the large sphere. The 
rate of convergence for unequal spheres can bc greatly improved by placing a greater 
number of rings on the larger sphere depending on the size ratio, as was done by Liao 
& Krueger (1980) for the axisymmetric motion of two unequal spheroids. 

The two-sphere results presented in this section show that when the order of 
truncation of the Fourier series is increased for a fixed number of boundary rings, the 
solution converges to a particular value, and when the number of boundary rings is 
increased, the solution converges to the exact value. So, depending upon the level of 
accuracy needed the number of boundary rings and the order of truncation can be 
fixed accordingly. It is seen here that convergence with increasing values of M and 
N is very rapid and systematic and the convergence problems encountered by 
Ganatos et al. (1978) for the settling of two spheres at an arbitrary orientation are 
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N 

2 
2 
2 
2 
2 
4 
4 
4 
4 
4 
6 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
8 

10 
10 
10 
10 
10 
10 

M 

2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
7 
2 
3 
4 
5 
6 
7 
2 
3 
4 
5 
6 
7 

Exact solution 

U 

- 0.03 166 
-0.03046 
-0.03035 
-0.03034 
-0.03034 
-0.06595 
- 0.06522 
-0.06520 
-0.06520 
-0.06520 
- 0.0661 7 
- 0.06540 
-0.06538 
-0.06538 
-0.06538 
-0.06538 
-0.06635 
- 0.06543 
- 0.06542 
- 0.06542 
-0.06542 
-0.06542 
-0.06640 
-0.06547 
-0.06547 
-0.06547 
- 0.06547 
-0.06547 
-0.06547 

W 

- 1.4663 
- 1.4661 
- 1.4662 
- 1.4662 
- 1.4662 
- 1.4778 
- 1.4778 
- 1.4777 
- 1.4777 
- 1.4777 
- 1.4794 
- 1.4782 
- 1.4781 
- 1.4781 
- 1.4781 
- 1.4781 
- 1.4795 
- 1.4783 
- 1.4782 
- 1.4782 
- 1.4782 
- 1.4782 
- 1.4795 
- 1.4783 
- 1.4782 
- 1.4782 
- 1.4782 
- 1.4782 
- 1.4782 

a, 
0.05544 
0.05667 
0.05669 
0.05669 
0.05669 
0.06293 
0.06566 
0.06570 
0.06569 
0.06569 
0.06282 
0.06616 
0.06624 
0.06625 
0.06623 
0.06623 
0.06238 
0.06585 
0.06583 
0.06575 
0.06574 
0.06574 
0.06236 
0.06578 
0.06580 
0.06572 
0.06570 
0.06571 
0.06571 

TABLE 3. Velocities of two spheres settling freely under gravity a t  an arbitrary orientation of 
y = O.Oo, /3 = 60.0". D/2a = 1.127 626; Nis  the number of rings on each sphere; M is the number of 
eigenfunctions retained in the azimuthal direction ; U ,  V ,  W ,  Q,, Q, and Q, are the translational 
and rotational velocity components. 

completely eliminated by satisfying the no-slip boundary conditions on entire rings 
on the surface of each sphere instead of discrete boundary points. 

We next consider the accuracy of the method in predicting the local fluid velocity 
field. Figure 3 ( a )  shows the flow field for uniform flow past two spheres whose line 
of centres lies parallel to the direction of flow a t  a centreto-centre distance of 
1.5430805 particle diameters. Figurz 3 ( b ) ,  which is an enlargement of the flow field 
in the gap between the two spheres, shows that a separated region of closed 
circulation develops between the two spheres exactly as predicted by the exact 
theory of Davis et al. (1976). In preparing figure 3 we used six collocation rings on 
each sphere and retained four terms in the Fourier series. 

Thus we see that the present method of solution not only can predict global 
quantities such as the force and torque on each particle but can accurately predict 
the fine structure of the local fluid velocity fields as well. It is worth noting that 
figure 3, and all other figures in this paper showing solutions for the fluid velocity 
field, were prepared by transferring the mainframe digital data to an IBM P C  AT and 
then plotting the data as shown in these figures with an HP 74408 plotter using the 
graphics capabilities of the AUTOCAD software. 
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N M  4 Tl 4 TZ 
2 2 0.8754 0.0649 0.6540 -0.0817 
2 3 0.8750 0.0655 0.6595 -0.0816 
2 4 0.8748 0.0658 0.6612 -0.0816 
2 5 0.8747 0.0659 0.6617 - 0.081 6 
2 6 0.8747 0.0660 0.6618 -0.0816 
4 2 0.8691 0.0580 0.6561 -0.0787 
4 3 0.8684 0.0584 0.6602 -0.0787 
4 4 0.8681 0.0585 0.6613 -0.0783 
4 5 0.8680 0.0586 0.6615 -0.0783 
4 6 0.8680 0.0586 0.6616 -0.0783 
6 2 0.8697 0.0589 0.6561 -0.0786 
6 3 0.8691 0.0594 0.6602 -0.0782 
6 4 0.8689 0.0596 0.6612 -0.0781 
6 5 0.8688 0.0596 0.6615 -0.0781 
6 6 0.8688 0.0596 0.6616 -0.0781 
8 2 0.8696 0.0589 0.6561 -0.0786 
8 3 0.8690 0.0593 0.6602 -0.0782 
8 4 0.8687 0.0595 0.6613 -0.0781 
8 5 0.8686 0.0596 0.6616 -0.0781 
8 6 0.8686 0.0596 0.6616 -0.0781 

Exact solutions 0.8686 0.0596 0.6616 -0.0781 
of Davis (1969) 

TABLE 4. Force and torque on two unequal spheres. a J a z  = 2.0, S/a ,  = 1.0, N is the number of 
collocation rings on each sphere. M is the order of truncation of Fourier series. 
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FIO~JRE 4. Multiparticle configuration of five spheres 

4. Arbitrary multisphere configurations 
In this section we present results for some interesting configurations involving a 

finite cluster of spherical particles. 
Consider J identical spheres settling under gravity arranged such that a t  the 

instant of time under consideration (J-1) spheres lie a t  the vertices of a regular 
horizontal polygon of radius D (measured in sphere radii) and the J t h  sphere is 
located a t  the centre of the regular polygon at a vertical distance H (in sphere radii) 
above the horizontal plane of the polygon as shown in figure 4. If the j th  sphere lies 
in the same horizontal plane of the polygon, it falls faster than the spheres at the 
vertices of the regular horizontal polygon, but if it lies in a plane above that of the 
polygon, and if H is sufficiently large, the spheres at the vertices of the horizontal 
polygon fall faster, leaving the J t h  sphere behind. Thus there is a critical spacing H 
for a particular value of D at which instant the whole configuration of spheres fall at 
the same speed. Figure 5 shows a plot for the critical spacing ratio H I D  as a function 
of the polygon radius D for 3-, 4-, 5- and 6-sphere configurations. As the ratio D l a  
is increased the critical spacing H I D  increases and asymptotes to a constant value 
as the spheres behave like point forces. As the number of spheres in the polygon is 
increased, the critical spacing ratio H I D  monotonically decreases. The curve for 
J = 3, which represents a vertical planar configuration of particles, is in excellent 
agreement with the approximate planar collocation results of Ganatos et al. 
(1978). 

Next we look at a steady configuration where a sphere is placed below as well as 
above the regular horizontal polygon as shown in figure 6. Figure 7 shows a plot for 
the ratio of critical spacing H I D  as a function of the polygon radius D for 4-, 5- and 
6-sphere configurations. It should be noted that although the configurations shown 
in figure 7 are steady, they are unstable. If any of the spheres in the cluster are 
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FIGURE 5.  Plot of critical spacing for configurations of 3, 4, 5 and 6 spheres 
as shown in figure 4. 
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FIGURE 6. Steady configuration of six spheres. 

slightly displaced from their critical position, the configuration will break up as it 
settles. 

We now examine the behaviour of a sphere settling freely under gravity in the 
presence of other fixed spheres. In  this example, J - 1 spheres are fixed a t  the corners 
of a horizontal regular polygon and the J t h  sphere is allowed to settle freely under 
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FIGURE 8. Schematic diagram of a sphere settling under gravity between t w o  fixed spheres in a 
vertical plane. 

gravity along a line perpendicular to the plane of the fixed spheres and passing 
through the centre of the polygon as shown in figures 8 and 9. The settling sphere will 
have a vertical velocity component but no lateral drift velocity owing to the 
symmetry of the flow. Therefore by calculating the velocity of the settling sphere as 
a function of vertical distance from the horizontal plane of the polygon it is possible 
to describe the complete time history of the falling motion. 
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FIGURE 9. Schematic diagram of a sphere settling under gravity through three fixed spheres 
placed a t  the vertices of a horizontal equilateral triangle. 

1 .o 
D / a  = 5 

0 4 8 12 16 20 
Hla 

FIGURE 10. Settling velocity of a sphere W ,  non-dimensionalized by the settling velocity of an 
isolated sphere, falling between two fixed spheres as shown in figure 8. 

Solutions are presented for two such cases. Figure 8 shows a 3-sphere configuration 
where a sphere is freely settling owing to gravity through two fixed spheres. Figure 
9 shows a 4-sphere configuration where a sphere is falling through three fixed spheres 
placed at the vertices of a horizontal equilateral triangle. Figures 10 and 11 show 
plots of the ratio of the instantaneous settling velocity of the falling sphere to the 
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FIGIJRE 1 1 .  Settling velocity of a sphere W .  non-dimensionalized by the settling velocity of an 
isolated sphere, falling between three fixed spheres as shown in figure 9. 

settling velocity of an isolated sphere as a function of vertical distance H from the 
plane of the fixed spheres for various centre-to-centre distances of the fixed spheres. 
Interestingly, the settling velocity of the sphere is not a t  its smallest value when it 
is in the plane of the fixed spheres but has a minimum before it approaches the plane 
of the fixed spheres. For D / a  = 5 the minimum velocity occurs a t  roughly H / a  = 3.5 
for two fixed spheres, and for D / a  = 5.8 the minimum velocity occurs a t  H / a  = 4.5 
for three fixed spheres. As the ratio D / a  is decreased, the minimum value occurs 
closer to the plane of the fixed spheres. The velocity of the falling sphere drops t o  zero 
when the centre-to-centre distance between the fixed spheres is such that the settling 
sphere just fits between the fixed spheres ( D l a  = 2 for three and four spheres). The 
reason why the settling sphere has a minimum velocity when it is above the plane of 
the fixed spheres is that  it views a greater exposed area of the fixed sphcrcs from this 
position than when it is in the same plane as the fixed spheres. This behaviour is 
consistent with the results of Dagan, Weinbaum & Pfeffer (1983) who considered the 
motion of a sphere through a circular hole in a planar wall. 

We next consider the flow field of several interesting three-particle configurations. 
Figure 12 shows the fluid velocity field for uniform flow past t,hree spheres arranged 
at  the corners of an equilateral triangle with one base of the triangle parallel to the 
direction of flow. Comparison with figure 3 shows that the presence of the third 
sphere changes the velocity profile considerably. Owing to the presencc of the sphcre 
on the right, the fluid in the gap between the top and bottom spheres has only one 
closed loop of circulating fluid in the plane of symmetry. However if this whole 
configuration is rotated by 60" so that one base of the triangle is perpendicular to the 
direction of the fluid flow, as shown in figure 13, there is no longer a region of closed 
circulation of fluid between the spheres. It is also seen from these figures how well the 
present method is able to  satisfy the no-slip boundary conditions on the surface of 
each sphere. In  all these runs for a centre-to-centre spacing of 1.543 086 diameters we 
used six collocation rings on each sphere and retained four terms in the Fourier 
series. 

The L-shaped configuration settling under gravity is another interesting case to 
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FIGURE 12. (a)  Fluid velocity field for flow past three rigidly held spheres placed at the corners 
of an equilateral triangle. Base of triangle is oriented parallel to the direction of fluid flow. 
D/2a = 1.543. ( b )  Enlarged view of the flow field in the gap. 
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FIGURE 13. Fluid velocity field for flow past three rigidly held spheres placed a t  the corners of an 
equilateral triangle. Base of triangle is oriented perpendicular to the direction of flow. D/2a = 
1.543. 

D I 

-- 
FIGURE 14. Three spheres in an L-shaped configuration settling freely under gravity. 

look at. Here three spheres are placed a t  the corners of a right-angle triangle a5 
shown in figure 14. According to the method of paired interactions sphere 1 placed 
a t  the vertex of the right angle (corner sphere) should have only a vertical velocity 
component and no lateral drift velocity. However using the exact theory, we find 
that it also has a horizontal component which arises from the interaction between 
spheres 2 and 3 on I. The intriguing feature is that when t>he interparticle distance 
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FIGURE 15. Plot of the lateral drift velocity U of the corner sphere (sphere 1 )  in the L-shaped 
configuration shown in figure 14. The velocity is non-dimensionalized by the settling velocity of an 
isolated sphere. 

between the three spheres is increased the horizontal velocity component of the 
corner sphere decreases and a t  a spacing of approximately 1.48 diameters it changes 
sign before decaying to zero. Figure 15 shows a plot of the converged lateral drift 
velocity of the corner sphere with the interparticle distance using six boundary 
collocation rings on each sphere and five terms in the Fourier series. The reason for 
this peculiar behaviour can be deduced by considering the flow field as viewed in a 
reference frame that is translating with the corner sphere as shown in figures 16 and 
17.  The fluid velocity profile around the corner sphere is shown in figure 16 for an 
interparticle spacing of 1.75 diameters where the corner sphere moves to the left, and 
in figure 17 for an interparticle spacing of 1.3 diameters where the corner sphere 
moves to the right. When the three spheres are falling under gravity the amount of 
fluid entering the gap between spheres 1 and 2 is more than the fluid leaving the gap, 
owing to the inhibiting action of sphere 3. This effect causes an accumulation of fluid 
between spheres 1 and 2 ,  tending to push them apart. When the interparticle 
distance is small (less than 1.48 diameters) the strong hydrodynamic interaction 
between spheres 2 and 3 causes the whole configuration to move to the right. 
However when the interparticle distance is greater than 1.48 diameters the 
hydrodynamic interaction weakens and the corner sphere moves to the left whereas 
spheres 1 and 2 move to the right. As the interparticle distance is further increased 
the hydrodynamic interaction further weakens and the lateral drift velocity of the 
corner sphere decays to zero. 

Next we look a t  a straight chain of three unequal spheres fixed in a uniform flow. 
For equal-sized spheres the central sphere experiences the least drag. However, the 
size of the central sphere can be increased so that all three spheres in the straight 
chain will experience the same force. In figure 18(a, 6 )  three spheres are arranged in 
a straight line which is either parallel or perpendicular to the direction of flow. The 
ratio of radii of the inner and outer sphere (a,/a2) is such that the drag force on all 
the three spheres in the chain is equal. Figure 19 shows a plot of the ratio of radii for 

2 FT,N l9 i  
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FIGURE 16. (a) Flow field in the velocity ofthree spheres arranged in an L-shaped configuration falling 
freely under gravity, D / a  = 3.5. Fluid velocities are measured relative to the translational 
velocity of the centre of sphere 1 .  ( b )  Enlarged view of the flow field in the gap betw-een spheres 1 
and 2. 

different interparticle spacings for both chains. It is observed that the variation in 
the ratio of radii is greater for increasing interparticle spacing when the chain is 
parallel to the direction of flow since the shielding effect of the outer spheres on the 
inner sphere is greater in this case. From these two plots we can obtain the ratio of 
radii for a particular interparticle spacing for any orientation of a straight chain of 
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FIGURE 1 7 .  ( a )  Flow field in the vicinity of three spheres arranged in an L-shaped configuration 
falling freely under gravity, D / a  = 2.6. Fluid velocities are measured relative to the translational 
velocity of the centre of sphere 1. ( b )  Enlarged view of the flow field in the gap between spheres 1 
and 2 .  

three spheres with respect to the direction of flow having equal drag force on all the 
spheres using the formula 

where p is any orientation angle measured from the horizontal axis, and (a,/a2)l and 
(aJa2) , ,  are the ratio of radii for the same interparticle spacing when the chain is 
perpendicular and parallel to the direction of flow respectively. 

2-2 
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FIGURE 18. Schematic diagram of uniform flow past a straight chain of three rigidly held unequal 
spheres. The two outer spheres are identical and the central sphere is larger. Chain oriented ( a )  
parallel and ( b )  perpendicular to the direction of flow. 
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FIGURE 19. Plot of the ratio of the radii of the inner to outer spheres aJaz required for all three 
spheres in the chains shown in figure 18 to experience the same drag force as a function of 
interparticle spacing. 

5. Symmetric multisphere configurations 
Although the formulation in 92 is general enough to handle any three-dimensional 

configuration of a finite number of spherical particles, a considerable reduction in 
computation time and storage requirements may be realized by taking advantage of 
the symmetry of certain configurations. 
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Fluid flow 1 
FIGURE 20. Eight rigidly held spheres in a simple cubic arrangement. 

Accordingly, the general formulation outlined in 3 2 is modified to treat special 
cases of symmetric configurations as follows. The unknown constants introduced in 
(2.4) and the coefficients of these unknown constants shown in (2.18) and Appendix 
B are functions of the geometry and position of the spheres and the collocation rings 
with reference to the coordinate system shown in figure 1. In  the case of a symmetric 
configuration of multiple spheres certain unknown constants (corresponding to  a 
symmetric pair of spheres in the configuration) of the collocation series are equal in 
magnitude and either equal or opposite in sign depending upon the type of symmetry 
between the two spheres of the whole configuration with respect to the reference 
coordinate system. After doing numerous test runs involving all types of symmetric 
configurations, these unknown constants were identified as equal or opposite in sign 
for a pair of symmetric spheres according to their type of symmetry (see Appendix 

For a system of J spheres in a given configuration, the first step in exploiting the 
symmetry conditions and reducing the number of equations and unknowns is to 
identify the type of symmetry between different pairs of spheres in that Configuration. 
The two equations corresponding to a particular value of m’ and a particular ring on 
a pair of symmetric spheres are added and subtract)ed. Depending on whether the 
unknown constants for that  pair of symmetric spheres is equal or opposite for the 
particular symmetry (see Appendix E) only the non-zero coefficients of the unknown 
constants are retained. The set of equations for the other sphere are discarded. This 
reduces the number of equations by half and the coefficients in the collocation matrix 
by a factor of four. If the configuration is symmetric with respect to the X-, Y -  and 
2-planes then the number of equations is reduced by a factor of eight and the size 
of the collocation matrix by 64. 

For a demonstration of this reduction technique, consider uniform flow past eight 
rigidly held spheres placed a t  the corner of a cube as shown in figure 20. This three- 
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dimensional multiparticle configuration of eight spheres is symmetric about the 
X - ,  Y- and Z-planes. The eight spheres are numbered as shown in figure 20 and a list 
of equal or opposite unknown constants for each pair of spheres is given below. 

For symmetry about the Y-plane ( j  = 1 and 5, 2 and 6, 3 and 7 ,  4 and 8) 
equal : cjolEjolCjo2Ejo2Bj11 Cj11Ej11Bj12Cj12Ejl2 

opposite : Ajol AjozAj11 Dj,lF,11 Aj12 Dj12 41, 

opposite : 

For symmetry about the X-plane ( j  = 1 and 4) 
equal : Ajoi Ajoz Bjii cjii Ejli Bj12 cj1z Ej12 

opposite : 

Spheres 1, 2, 3 and 4 are symmetric with spheres 5, 6, 7 itnd 8 respectively about 
the Y-plane. Hence for the set of equations for sphere 1 the coefficients of the 
unknown constants for sphere i are added and subtracted with that of sphere 5 and 
all the non-zero terms are retained in the set of equations for sphere1 while the set 
of equations for sphere 5 is no longer needed. A similar technique is used for the other 
three pairs of spheres (i.e. 2 and 4, 3 and 7 ,  4 and 8). This leaves only the set of 
equations for spheres 1, 2, 3 and 4. Then symmetry conditions about the Z-plane are 
used for sphere pairs (1,4) and (2 ,3) .  Here spheres 5, 6, 7 and 8 are not considered 
as the equations corresponding to them have already been accounted for when using 
the symmetry about the Y-plane. Coefficients for sphere 1 are added and subtracted 
with those of sphere 4 in the set of equations for sphere 1, retaining only the non-zero 
term in the set of equations for sphere 1 and discarding the set of equations for sphere 
4. This is also done for the pair (2 ,3) .  Now only the sets of equations for spheres 1 
and 2 are left. Finally the symmetry about the X-plane is used between spheres 1 and 
2 (as equations for all other spheres are eliminated using symmetry about the X -  and 
Y-planes) and coefficients in the set of equations for sphere 1 are added and 
subtracted with those of sphere 2, retaining only the equations for sphere 1 with non- 
zero coefficients. This reduces the set of equations by a factor of eight and the matrix 
size by 64. 

Using the symmetry theory described above, the drag force on symmetric 
configurations of 8, 16, 24, 32, 40, 48, 56 and 64 spheres were obtained. Results for 
two cases with different sphere configurations are presented. I n  the first case, the 
initial set of eight spheres were placed a t  the corners of a cube and then sets of eight 
spheres up to a total of 64 spheres were added to construct a 4 x 4 x 4 cube around 
the initial cube. In the second case, the initial set of eight spheres were placed at the 
corners of a cube and then sets of eight spheres added in the direction of flow, 
enclosing the initial cube to form four columns of spheres. In both cases, the centre- 
to-centre spacing between any two adjacent spheres was 16.12 sphere radii 
corresponding to a particle concentration of 0.001. The values of the drag force F,, 
non-dimensionalized by the drag force on an isolated sphere, on each of the eight 
spheres that make up the innermost cube are presented in figure 21 for increasing 
number of spheres J in the whole configuration. The drag force decreascs with 
increasing number of spheres owing to the shielding effect of the outer spheres on the 
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FIGURE 21. Drag force F, on each of the four innermost spheres for 
increasing number of spheres J .  

inner spheres in both cases, but the decrease in the drag for the first case is greater 
because the shielding of the innermost sphere is from all directions. 

As a check for the present method, the drag force on 64 spheres rigidly held in place 
in a uniform flow at  the corners of a 4 x 4 x 4 simple cubic array (see figure 2 2 )  were 
compared with those obtained by the method of Durlofsky, Brady & Bossis (1987). 
For a centre-to-centre distance of 8.06 particle diameters we used two collocation 
rings on each sphere and retained the first two terms in the Fourier series. Our results 
of the drag force parallel to the direction of flow on each of 64 spheres matched with 
the results of Durlofsky, Brady & Bossis (1987) to a t  least four decimal places, and 
table 5 gives a comparison of the drag force on 64 spheres obtained by the method 
of Durlofsky et al. F,, DBB and by the present method F,, HGP. The values of the force 
are presented for sets of eight spheres having symmetry about the X-, Y- and Z- 
planes. 

6.  Concluding remarks 
The developed technique is extremely accurate in predicting the hydrodynamic 

interactions for a finite number of spheres arranged a t  any arbitrary configuration in 
three-dimensional space. It provides a general solution for velocity and pressure 
fields and can be used to calculate translational and rotational velocities, force and 
torque. In  principle, the method can give any degree of numerical accuracy by simply 
increasing the number of collocation rings where the no-slip boundary conditions are 
satisfied on the surface of each sphere, and by increasing the number of terms 
retained in the Fourier series. The fluid velocity field, which is obtained accurately, 
can show any fine structure such as a closed circulation of fluid if it exists. 

However, there has to be a compromise between the accuracy, number of spheres, 
the interparticle spacing and the computational time required. We have been able to 
accurately study fully three-dimensional configurations containing up to 32 spheres 
a t  a centre-to-centre spacing of 8 diameters and we also looked a t  configurations 
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F I G U R E  22.  Schematic diagram of uniform flow past 64 identical spheres rigidly held in a 
simple cubic arrangement. 

containing fewer spheres as close as 1.01 diameters. The computational time required 
for a single arbitrary three-dimensional asymmetric configuration of particles is 
approximately 3Jiv(2M- 1 )  x 0.05 s on an IBM 3081 computer. Runs made on a 
CRAY I1 supercomputer at Research Equipment Inc. of the University of Minnesota 
utilizing the vectorization abilities of that  processor required one third of the 
computational time cited above. This time is used primarily for the numerical 
evaluation of the integrals in the coefficient matrix. The storage requirement on the 
IBM 3081 is approximately 8/1024 x ( 3 J N ) 2  ( 2 M )  (242- I )  K-bytes using double- 
precision arithmetic (16 digits). The computational time is the main drawback of this 
method, which can be overcome to a certain extent by using symmetry conditions for 
symmetric configurations. 

When applying this method of solution to practical problems we should single out 
its major advantages and disadvantages compared to other methods of solution, 
particularly the approach of Durlofsky et al. (1987). The main advantages include the 
ability to obtain pointwise solutions. Fluid velocity and whole streamlines can 
be traced, thus enabling, in principle, tracing a fluid particle and other scalar 
quantities associated with it. The functions associated with particle motions, such as 
force, torque and stress, can in principle be evaluated accurately. These cannot be 
provided by the method of Durlofsky et al. (1987) which makes use of two-body 
interactions a t  close spacings and is only asymptotically correct at very high or very 
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Set Position of the 8 spheres in the set F,,,BB F r . H c x  
no. symmetric about the X - ,  Y -  & 2-planes 

( 0, 0, 0 ) (  0, -16.1. 0) 
( 0, 0 , -16 .1) (  0,-16.1,-16.1) 
(-16.1. 0, 0) (-16.1, -16.1, 0) 
(-16.1, 0, -16.1)(-16.1, -16.1, -16.1) 

( 0, 0, 16.1) ( 0, -16.1, 16.1) 
( 0, 0, -32.2) ( 0, -16.1, -32.2) 
(-16.1, 0, 16.1)(--16.1, -16.1, 16.1) 
(-16.1, 0, -32.2)(-16.1, -16.1, -32.2) 

( 16.1, 0, 0) ( 16.1, -16.1, 0) 
( 16.1, 0, -16.1)( 16.1, -16.1, -16.1) 
(-32.2. 0, 0) (-32.2, -16.1, 0) 
(-32.2, 0, -16.1)(-32.2, -16.1, -16.1) 

( 16.1, 0, 0 ) (  16.1,-16.1, 0) 
( 16.1. 0, -16.1)( 16.1, -16.1, -16.1) 
(-32.2, 0, 0) (-32.2, -16.1, 0) 
(-32.2, 0, -16.1)(-32.2, -16.1, -16.1) 

( 0, 16.1, 0) ( 0, -32.2, 0) 
( 0, 16.1, -16.1) ( 0, -32.2, -16.1) 
(-16.1. 16.1, 0) (-16.1, -32.2, 0) 
(-16.1, 16.1, -16.1)(-16.1, -32.2, -16.1) 

( 0. 16.1, 16.1)( 0, -32.2, 16.1) 
( 0, 16.1, -32.2) ( 0, -32.2, -32.2) 
(-16.1,16.1, 16.1)(-16.1, -32.2, 16.1) 
(-16.1, 16.1, -32.2) (-16.1, -32.2, -32.2) 

( 16.1. 16.1, 0) ( 16.1, -32.2, 0) 
( 16.1, 16.1, -16.1)( 16.1, -32.2. -16.1) 
(-32.2. 16.1, 0) (-32.2, -32.2, 0) 
(-32.2, 16.1, -16.1) (-32.2, -32.2, -16.1) 

( 16.1, 16.1, 0) ( 16.1, -32.2, 0) 
( 16.1,16.1, -16.1)( 16.1, -32.2, -16.1) 
(-32.2. 16.1, 0) (-32.2, -32.2, 0) 
(-32.2, 16.1, -16.1)(-32.2, -32.2, -16.1) 

0.2619 0.2619 

0.3198 0.3198 

0.3442 0.3442 

0.4006 0.4006 

0.3442 0.3442 

0.4006 0.4006 

0.4174 0.4174 

0.4700 0.4700 

TABLE 5.  Comparison of results for the drag force on 64 spheres rigidly held in a uniform flow a t  
the corners of a 4 x 4 x 4 simple cube. Centre-to-centre spacing between any two adjacent spheres 
is 16.12 sphere radii. 

low particle proximities. The one major disadvantage is that  the method uses large 
computer volumes and calculations take a long time. This disadvantage, which is not 
a serious drawback in Durlofsky et at. (1987), limits the application considerably. 

In  view of the computer space and time limitations, the possible applications must 
focus on the instantaneous exposure of particle configurations. Evaluation of a cloud 
of a few particles is feasible. Interaction between particles in a variable shear flow can 
also be accurately studied. The method can also be used to obtain streamlines in 
multiparticle arrays which form the basis for heat and mass transfer studies and 
evaluation of effective conductivities in suspension. A macroscopic property that is 
feasible to calculate is the so-called long-wave oscillatory viscosity. This kind of 
calculation does not necessarily require ensemble averaging of many realizations. It 
is also possible to do bounded flow problems accurately using this method. 
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Appendices 
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Appendix A. Derivation of coordinate transformations (2.7), (2.8) and (2.9) 

Appendix B. Explicit expressions for the primed coefficients in (2.11). 

Appendix C. Explicit expressions for the primed functions in (2.17). 

Appendix D. Collocation matrix equation for two spheres with two rings and two 
terms retained in the Fourier series. 

Appendix E. Symmetry classification of the unknown constants introduced in 
(2.4). 
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